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Field Equations for Gravity Quadratic 
in the Curvature 
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VacUum field equations for gravity are studied having their origin in a Lagrangian 
quadratic in the curvature. The motivation for this choice of the Lagrangian-- 
namely the treating of gravity in a strict analogy to gauge theories of Yang-MiUs 
type~is criticized, especially the implied view of connections as gauge potentials 
with no dynamical relation to the metric. The correct field equations with respect 
to variation of the connections and the metric independently are given. We deduce 
field equations which differ from previous ones by variation of the metric, the 
torsion, and the nonmetricity from which the connections are built. 

1. INTRODUCTION 

Fairchild (1976) has proposed a gauge theory of gravity based on earlier 
elaborations by Stephenson (1958) and Yang (1974). In establishing the 
Lagrangian of gravity and deriving the field equations, he argues in complete 
analogy to gauge theories of the Yang-Mills type. So the linear connections 
F~v ~ of affine spaces are viewed as gauge potentials of the gauge group 
GL(4, R) defining the proper gauge-covariant derivative. The gauge field is 
given then by the curvature 

R ~  ~ = 2c3E~ r~l~ ~ - 2 FIJ, I~PFI~IS ( 1. I ) 

To conserve the analogy to gauge theories, the field equations for matter- 
free gravity are given by variation of the action, 

f ~1/2 R ~R P - ~  (1.2) I= d4x g u,:p ;~r g g 

with respect to the "gauge potentials" F ~  ~. Since in Yang-Mills theories 
the gauge potentials have no dynamical relation to a metric (metric in group 
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space), and no symmetries with respect to indices of gauge potentials can be 
given a priori, these facts should also be taken over to the above gauge- 
analogy gravity. Therefore one gets two distinct sets of field equations: the 
first by varying (1.2) with respect to the connections F~a r (with torsion and 
nonmetricity) viewed as dynamically decoupled from the metric, and the 
second by varying (1.2) with respect to the metric. There are severe points 
of objection against this program of Fairchild (1976). Before coming to 
these, we mention that the equations derived in Fairchild (1976) are wrong. 
Fairchild has given a hint to this in an erratum to that work. We will derive 
the correct field equations by varying the above Lagrangian with respect to 
the connections (with torsion and nonmetricity) independent of the metric, 
as was tried by Fairchild (1976), and by varying with respect to the metric. 

In gauge theories the indices of the gauge potentials ~b~i j are of different 
character (marked here by Greek and Latin letters); the Greek index is a 
space-time index, while the Latin indices are those of the inner symmetry 
group, the gauge group [e.g., SU(2)]. Therefore no assumptions about index 
symmetries can be made a priori. This is in contrast to metric theories of 
gravity. There the group of space-time transformations and the gauge 
group are identical and all indices are of the same kind. There are strong 
physical reasons to split the connections Fa~ r into a symmetric and an 
antisymmetric part with respect to the lower indices. The antisymmetric part 
Ftaajr ~ is called torsion and is related to spin in geometric theories of 
gravity (Bahmann, 1990) ; it should be omitted if one postulates a strictly 
local Minkowskian structure of gravity. 

In geometric theories of gravity the metric plays the fundamental role 
of a dynamical variable and not the linear connections, in contrast to gauge 
theories. All other attempts are more or less mathematical and are inspired 
by the wish to draw an analogy to gauge theories, but are physically not 
justified, in contrast to Bahmann (1990). A covariant derivative is defined 
with the linear connections. The symmetric part of the connections can be 
separated now into two classes, depending on whether the covariant deriva- 
tive of the metric itself vanishes or not. The quantity - V ~ g a r  = Q~#r is 
called the nonmetricity (V means the covariant derivative with respect 
to the connection). There are strong physical reasons for vanishing non- 
metricity (e.g., constant length of 4-vectors during parallel transport). 

The most general linear connection F U k therefore reads (Hehl et aI., 
1976) 

k _ _  kl abc I_ d F o. - g  A~,, (2~,gbc--gcaS~b + �89 (1.3) 

with 

A~bc: --- #~' ~S~ + 67S~'~:-- ~7#~ S~ (1.4) 
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The first part in (1.3) is the usual Christoffel symbol corresponding to a 
Riemannian geometry (vanishing torsion and nonmetricity), the second part 
consists of torsion contributions, and the last part consists of contributions 
from the nonmetricity. The fundamental dynamical variables are therefore 
the metric, the torsion, and the nonmetricity and not the linear connection 
built of them. In obtaining field equations for gravity with respect to the 
action (1.2), these are the quantities after which it should be varied 
independently. 

One cannot argue with the Palatini method, which means that the result- 
ing equations for gravity are the same if one varies independently with 
respect to the connections and metric making no prior assumption about 
the connections, or making prior assumptions about the metric dependence 
of the connections and then varying with respect to the metric alone. 
Stephenson (1958) has shown that his method is restricted to symmetric 
connections and the Einstein-Hilbert Lagrangian only. 

As a result of all the mentioned differences between gravity and gauge 
theories, we conclude that varying the proposed action (1.2) with respect to 
the connections and the metric independently is physically not justified. The 
analogy of gravity to gauge theories suggested by Fairchild does not exist. 
Further, the action (1.2) can only serve as a correction to the Einstein- 
Hilbert action, since the Newtonian limits gets lost (Fairchild, 1976). These 
corrections may be important in regions of high curvature or in a somewhat 
quantized version of general relativity. From this point of view and to correct 
the equations in Fairchild (1976), we calculate the field equations corre- 
sponding to the action (1.2). 

In Section 2 we give some preliminary fundamental equations and rela- 
tions needed in the following calculations. 

In Section 3 we perform the variations with respect to the connections 
and metric independently, presenting the corrected equations of Fairchild. 

In Section 4 we take into account the dependences of the connections 
with respect to the metric, torsion, and nonmetricity and present the field 
equations for the metric, torsion, and nonmetricity. 

2. PRELIMINARY RELATIONS 

We make the following abbreviations: 

g : = - d e t  g~v; e:=x/g 

The connections Fij k can be written as 

Fi j k _  klAabc~l d I --g /---~jil ~O,,gbc--gcaS,,b + ~Qabc) 

(2.1) 

(2.2) 
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with 

Here 

and 
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A j • b c  xa~b~c • ~-~bXc 8o~b8 c 
i l  - -  t . , j  u i  ~ l  ~ o i  U l  t J j  - -  1 j i (2.3) 

Sabd:=F[ab] d (2.4) 

Q.bc := -- V.gbc (2.5) 

are the torsion, resp. the nonmetricity, and V means the covariant derivative 
with respect to the connection (2.2). 

Since g is a scalar density of weight -2 ,  we get 

Vpg = g , , -  2For (2.6) 

We make the abbreviation 

Fo:=FRr r (2.7) 

(2.6) written for e = ,fg reads 

V pe = e.p - F pe 

With (Z2), (2.3), and (2.7) we get 

Fp=  �89 glr + Zp 

with 

The variation of  g gives 

Since 

(2.8) 

(2.9) 

Zp:= ~_r pC, (2.10) 

8g = - gg ,  ~ 6g ~ ~ (2.11) 

~gU~= _gU~g~P 8g~p (2.12) 

we get 

It follows immediately that 

5g = gg'~P 6g~,t3 (2.13) 

1 ct~ 
- g , p = g  galLp (2.14) 
g 
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(2.14) in (2.9) gives 

respectively, 

11 
- g p + Z p  FP=2 g " 

1 
Fp = -- e,p + Z p  

e 

(2.15) in (2.6), resp. (2.15a) in (2.8), give 

Vpg = - 2gZp 

respectively, 
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(2.15) 

(2.15a) 

(2.16) 

Vpe = -- eZp (2.17) 

One sees immediately that in the Riemannian case (i.e., vanishing torsion 
and nonmetricity) Vpg, resp., Vpe vanishes. 

Some further useful relations are 

respectively, 

with 

1-go+;Z p (2.18) F~p r = ~  g ' 

rcpr = 1 e p + 2 v (2.19) 
e 

Zp= -2Spr r + ~g Qpr (2.20) 

(2.18) with (2.15), resp. (2.19) with (2.15a), give, with the aid of (2.10) and 
(2.20), 

Fp -- F r  = 2Spr r (2.21) 

which vanishes of course for vanishing torsion. 

3. VARIATION WITH RESPECT TO C O N N E C T I O N S  A N D  
METRIC I N D E P E N D E N T  OF EACH O T H E R  

The action I is given by 

I= f d4x e ~  (3.1) 
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with the Lagrangian density given by 

~LP = Ru,~p(~ Rz~,~t'gUZ g '~ 

Here Rurp ~r m e a n s  the curvature 

Rt,,~p~: = 2OtuF,~lp a + 2F[~,t,~ ~rFl~lp~ 

3.1. Variation with Respect  to the Connections 

Variation of (3.1) with respect to F~p ~ gives 

6i=fd4xe [ ale 5rJ+ ale aFJr 
0Fa~ r 0F,,/~r,r �9 

=;d4x{[e(oC~F'~Bx-O,~) 

OF~t3 .r \ OF~p r ~ ,r 
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(3.2) 

(3.3) 

Dropping the 4-divergence leads, with the aid of (2.8), to 

8I= d4x e .O~-~ ~ 0r OF~r,r F~ o~pr  r 

Os l 
- (V~e) z--~---~| 6Fae (3.4) 

With (3.3) we obtain 

OR~,;" R~.~, pgt~Zg,: , = 2F,:pP R,~,~r,~ + 2F~r~R~o# (3.5) 
0F~p r 

By index transformations p --) A., t< --, e, p --) o-, o" --)p, ). --* p, and e ~ x we 
get 

O R~,,,  Ru,w,,gUZ g,~ = 2F ~aO Ra~ra + 2F ~rP ReapO (3.6) 
OFaflr 

(3.5)  and (3.6)  give 

Os _ 4(F,  pRO,r,, + F~rPR,~pt~ ) (3.7) 
OF~p r 
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Further, we get 
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ORp wp cr 
R ' ~ ' f  gU~g~:~= 2Rear O (3.8) 

Performing the same index transformations as above and adding the result 
to (3.8) leads to 

So we get 

0 ~  
- - =  4Rear p (3.9) 
OFafl r, 

OSY 
0r OF,~tJr = 4Rr162 (3.10) 

We now express the usual partial derivative in (3.10) by the corresponding 
covariant one and obtain 

O~ 
0r - -  - 4R r r t~,~ - 4Fvr V'R~ r ~ + 4 F ~ R ~ r "  

+ 4F,rPR~ap 13 - 4FeveR Cv r ~ (3.11) 

Inserting (3.11), (3.9), and (3.7) and (3.4), we get 

i l l = - 4  f d4x fF~l~r[Vr ) 

+ e(Fr - F~,r V')Rr r~ - eFr ~,~RCV'~ ~] (3.12) 

From the definition of the curvature (3.3) it follows that 

Rr r/~ = R t r rp (3.13) 

From the definition of the connection (2.2) it follows that 

Fu k = Ft03 k + F<u> k (3.14) 

with 

F[~j] k = :  So.~ 

Using (3.14) and (2.21), we obtain for (3.12) 

i I  = - 4  f a4x iF~pr[V~(eR~r~ ) 

+ 2eScv ~R r r ~ - eS~v"R r ~'r t3] (3.15) 
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and thus for the field equations with respect to the variation of  F~p ~ 

Vr r r 8) + 2eS~vVR~rP - eSr ~ = 0 (3.16) 

This equation differs from that found by Fairchild (1976), equation (12), in 
the two terms with explicit torsion. Fairchild's equation therefore is correct 
only in the case of  symmetric connections. 

3.2. Variation with Respect to the Metric 

Variation of  the action (3.1) with respect to the metric (the connections 
are treated as independent of  the metric) gives 

f d4x Rt,,cp"Rz~,~P(6gl';tg'C~e+gUZ6g'~ee+ 6eg~Zg '~) (3.17) 61= 

With (2.11), (2.1), and (2.12) we obtain 

3I= - f d4x e[R '~ ~p"R ~ ~,,P + RZap *Rz a,~p - �89 p] 6g,~p (3.1 8) 

Using the antisymmetry property (3.13), we finally get the field equations 

e[RaEpaR~Ecrp__ 1 al~o,~e ao m-- ~g ,, p ~,z~ j - 0  (3.19) 

This equation is identical to that found by Fairchild (1976), equations 
(25) and (26). 2 

4. TAKING INTO ACCOUNT THE EXPLICIT DEPENDENCE 
OF THE CONNEC TIONS OF METRIC,  TORSION,  AND 
NONMETRICITY;  FIELD EQUATIONS WITH 
RESPECT TO THESE QUANTITIES 

4.1. Variation with Respect to the Metric 

With (3.15) and (3.18) we get 

f d4x {-2e[RU~p~RV,J-�88 p] t~guv 6I= 

- 4[V~(eRr a) +2eScv, V'Rr p -eScv,~Rr ] 6F~13 r } (4.1) 

2Equations (3.16) and (3.19) can also be derived from equations (55) and (56) in Hehl et al. 
(1989) by correspondingly specifying the gravitational Lagrangian, since these equations are 
general Euler-Lagrange equations. 
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If  we are interested in the field equations with respect to the metric, we 
have to take the variations of Fu~ r with respect to the metric and its deriva- 
tives. With the relation (2.2) we therefore obtain 

8F,~ ~ = [-g~(mFa~lv)--grtA~lUlS,,bW) ] 6gu,, 
I_ ~71Aa(bc ) 

"+" 2,g zapu! t~gbc,a (4.2) 

Since, p, v, resp. b, c, are summation indices and the metric is symmetric, 
the symmetrization carried out above is implied. As abbreviation we write 

Vr t3) + 2eScv, V'RcaTa-eSr aRr Ua~ 13 (4.3) 

We now treat that part in the integral (4.1) which is proportional to 
6Fa~ r and write for this with the abbreviation (4.3) 

~Ipar = - 4  f d 4 x  U" r '  8raa r (4.4) 

By insertion of (4.2) in (4.4), the part proportional to the derivative of the 
metric becomes 

f r ra  flzl_ 711a(bc) 8Ipar/par = - - 4  d 4 x  u ~, 1,2g /-x#al (~gbc,a) 

f r r r r a  f l l_YIAa(bc)  = - 4  d 4 x t t ~  ~ =~ ~t~l 6gb~),~ 

[ r ra ~1 _7.,lAa(bc)) ~ 
--I ,  tJ r 2g zat~al J , a Sgbc]  (4.5) 

Dropping the 4-divergence and insertion in (4.4) gives 

- 4  f d4x [-g~'(UlFaplV) rra p--r/^ab("lc I~)rr,~ 6 Ip.~ = 7 ,~ t.Jflal ~ab t.~ y 

- �89 ( u" ~g~AS~/>  ),a] 8g.~ (4.6) 

Performing in (4.3) the covariant derivative of e using (2.17) gives 

U a 7 p = eT a yP (4.7) 

where the tensor TaT p reads 

T~,~:=RCar~;~+ 2Scv~'Rr162 ~ (4.8) 

with Zr = �89 
With these abbreviations we get 

( I ra  t3--'/IAa('uv)~ - - ~  'T'a f l ~ T l A a ( p v ) - b ' t ' Z  a P--YIAa(pv)~" (4.9) 
y ,~ t-afla I },a--C,a.,~ g ~ t-~fla I t:~ 7 ,:~ t i f f  al },a 
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The second term on the right side expressed by the covariant derivative gives 

( T a r~ grtA~(fftv)).Q = ( T a ra grt A ~(fft v)) ;,, 

- F o v ~  v)) 

- F o , ( z l ( r ~ r a g r t A ~ 7 )  ) 

1-" ( v l c , ra  13~rlAalU)wl (4.10) - - l a y  I I y ~:~ t..-I#ctl ] 

Using (2.19) to express F,v," in (4.10) and inserting in (4.9) gives 

r r a O_YlAa(IJ v).L __ e( T"  r "grlA~(fftv));. r • t l f l  al ] ,a - -  

- e2,,( T'~re gr'A~(fF )) 

- eF,v,(ul( r ~ ragrlA~) ~)) 

_r~ (v[,','r,a fl_?'lAal,u)~r (4.11) 

Using the given symmetry in p, v in (4.11) and inserting in (4.6) gives 

f d 4 x  ~ r _ ~ r ( ~ l r  Iv),ra fl _ _ _ r l  A ab(Id'ra fl ~ Iv) 6 I p ~ = - 4  J t: t ,~ l afl z 7/ ~:~ L~,flal 1 y Oab 

I ,~. . ' ~ a  fl y l*a(pv)x  L ! s  ( v l j _ p  (vh,'pa fl_YltAal~)b_t_Aablla)'~ 
f f ' 2 L a ( l  7 g L~fl al ) a 2 1 , ~  - - * ( a b )  ) 1  r 8 tt-Xflal " L ~ f l a l  1 

- �89 ( T ~ ragr'A~(g, ~)) ;,] 6g~, ~ (4.12) 

With the aid of the defining relation for A~ ~ in (2.3) we get 

Aa#b • Aabu __ . ' ~  [al .~P ~'lb] 3- .").~/J .~ [agO] 3_ "~.~ (aRb).~,u (4.13) 
f l t t l ~ t J f l a l - - Z . o f l  Ua t l l  Y ~ o f l O a  Ul ~ L o f l  tJ a Ul 

We therefore obtain 

�89 (Sab TM + F(ab) (vl) T ~ r a g r 1 ( A ~  b + A~bal~ )) 

= Sab(V l (T la ) r [a lgr lb]+  Ttalrla)grlb] ) + F(ab)(VlT(blr la)g  rip) (4.14) 

_ F~ a (~1 T ~ r IJgrl.) _ Sab ( vl T ~ r " g r l A ~ ) )  

= -- Fc~(VlT'~ragrtU)- S~b(Vt(Tbr~ + TrlU)g r b -  T~)bg ra) (4.15) 

The addition of (4.14) and (4.15) which is needed in (4.12) vanishes, so that 
we finally get, with the aid of (2.20), 

2 f d 4 x  e [ ( - 2 S o J  + !_~p,n x , , - ra  l~_rlaa(uv)~ 5/par 2 g  ~ a p t 7 ) l . l  y g I-~flal ] 

- ( T '~ r~grlA~(~l ~)) ;~] 6g ,  ~ (4.16) 
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(4.16) with (4.4) and (4.10) finally gives the field equations with respect 
to guy : 

RU Cpr R v ca p _ �88 v R,~ep~R~.E p 

"[- ( - 2 S a c r  ~ -~ l ~ r  t"l ,~[,.T, ct . O ~ ' l A a ( I J v ) "  ~ 
~,g ~L.apcr ll,-~ y ,~, t.atffctl ) 

- ( V  ~ yagrtA~<g,v)):0 = 0 (4.17) 

In the Riemannian case (vanishing torsion and nonmetricity) we get [see the 
definition of T~y" in (4.8)] 

R~(Vlalu);~;a_]_ I n l z e  c r n v  p 1 l.lvr,j.~e r  p ~ n  p n ~o- - ~ g  ~ p nz~r = 0  (4.18) 

4.2. Variation with Respect to the Torsion and Nonmetrie i ty  

The starting point is 

6 1 = - 4  f d4x U~y p 6 r u ~ 7 = - 4  f d4x e T ~  ' 6 F u r  r (4.19) 

With (2.2) the variation of F,b Y with respect to the torsion reads 

5F,~P r 8 S ,  ~ = _ ~ y t A ~ 1 ~  ~S~ ~ (4.20) 

Inserting (4.20) in (4.19) gives 

81= + 4 d4x g ~tJ~l g ~  ,~o,,, e T  ~ y (4.21) 

and therefore the field equations with respect to the torsion are 

A~UJ~]~ gr/g~,~ T ~ r t~ = 0 (4.22) 

Following the same procedure with respect to the nonmetricity gives--by 
taking into account its symmetry--the corresponding field equations for 
nonmetricity: 

A U ~ ) g  r'T~ r" = 0 (4.23) 
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